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Abstract

Computational photography involves sophisticated cap-
ture methods. A new trend is to capture projection of higher
dimensional visual signals such as videos, multi-spectral
data and lightfields on lower dimensional sensors. Care-
fully designed capture methods exploit the sparsity of the
underlying signal in a transformed domain to reduce the
number of measurements and use an appropriate recon-
struction method. Traditional progressive methods may
capture successively more detail using a sequence of sim-
ple projection basis, such as DCT or wavelets and employ
straightforward backprojection for reconstruction. Ran-
domized projection methods do not use any specific se-
quence and use L0 minimization for reconstruction. In this
paper, we analyze the statistical properties of natural im-
ages, videos, multi-spectral data and light-fields and com-
pare the effectiveness of progressive and random projec-
tions. We define effectiveness by plotting reconstruction
SNR against compression factor. The key idea is a proce-
dure to measure best-case effectiveness that is fast, inde-
pendent of specific hardware and independent of the recon-
struction procedure. We believe this is the first empirical
study to compare different lossy capture strategies without
the complication of hardware or reconstruction ambiguity.
The scope is limited to linear non-adaptive sensing. The re-
sults show that random projections produce significant ad-
vantages over other projections only for higher dimensional
signals, and suggest more research to nascent adaptive and
non-linear projection methods.

1.. Introduction
Computational photography involves sophisticated cap-

ture methods to capture high dimensional visual signals us-
ing invertible multiplexing of signals. This is achieved by
careful capture time projection followed by sophisticated

reconstruction. To reduce the number of measurements, a
common strategy is to exploit the sparsity in a transformed
domain. Let us consider the two projective signal capture
approaches for exploiting the sparsity: progressive versus
randomized sampling.

Progressive projections Consider the single pixel cam-
era [11]. The successive basis from domains like DCT or
Wavelet can be used as modulation patterns to progressively
capture higher frequencies. Since signal energy is often
compactly represented with the first few coefficients, recov-
ering them is useful for reconstruction. M measurements
using these progressive projection patterns lead to recovery
of first M frequency coefficients within the basis chosen.
The reconstruction is straightforward via weighted combi-
nation of each of the M basis.This has been well-known
technique for visual signal compression for a long time
(JPEG [14] , MPEG [18], Transform coding [7], Wavelet
based compression [8]).

Random projections Random projection based meth-
ods are often studied in the compressive sensing [5][9] and
have been applied to various acquisition problems in vision
and graphics. Noteworthy among these are: Single pixel
camera [11], Compressed video sensing[10], CS Light field
capture [3], and Multispectral capture [12]. This has spun
a new array of techniques that observe linearly mixed ran-
dom measurements (projections) and reconstructs the sig-
nal using compressive sensing based reconstruction algo-
rithms (L1 minimization). For signals that can be shown to
be sparse in some basis, it has been shown that observing
M = cKlog(N

K ) linear observations is sufficient to ensure
exact recovery of such signals [6].

We aim to empirically answer the question: Are random
projections based signal capture methods more effective
than progressive projections for visual signals? This ques-
tion, though important has not been answered concretely
in the literature due to multiple challenges: (a) The first
challenge is to define effectiveness. (b) The second chal-
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Figure 1. Pipeline for Signal capture and reconstruction using
Progressive Transform Coding (TC, Red) or Randomized sparsity
coding (SC4,Green).

lenge is to create a metric that is independent of a specific
capture strategy or the sophistication of the (future) recon-
struction algorithm. (c) The third challenge is to accom-
modate nascent adaptive projection methods in comparison.
These factors make the discussion on sparsity exploiting
methods very tortuous. We address this using the follow-
ing approach: (a) We compare effectiveness by computing
the reconstruction SNR (signal to noise ratio) for a given
compression factor. The approach is empirical and we em-
ploy large datasets for analysis. Because the datasets are
large for analyzing the statistical properties, we also need a
fast and efficient method for comparing effectiveness. (b)
We use a metric based on Parseval’s energy theorem to re-
late energy of signal to the energy of the coefficients. Then
we use best-case of most recent empirically found recovery
bounds to be partial to randomized projection approaches.
(c) We limit ourselves to linear and non-adaptive projection
methods which are mature and well understood. When the
adaptive methods become more established, we agree that a
new comparative analysis will need to be performed. In this
paper, we design a mechanism to compute the effectiveness
for a variety of visual signals such as videos, multi-spectral
data and lightfields.

1.1. Motivation

While sparsity has been exploited for image acquisition
[11], dual photography [20], reflectance field capture [17]
and face recognition [22], there has been little attention
paid to the comparison of progressive projections and ran-
dom projections. The primary analysis in this paper in-
dicates that for images and videos, progressive projection
based capture and reconstruction techniques perform com-
parable to that of random projection based capture and re-
construction. Nevertheless, the analysis also shows that
for higher dimensional computational photographic signals
such as multispectral data and light-fields, sparsity plays a
larger role and techniques that can recover highest magni-
tude frequency coefficients may be better equipped to tackle
these problems, instead of techniques that progressively re-
cover first few coefficients.

Objective and scope: The objective of this paper is
to empirically evaluate the relative merits of these sam-
pling techniques. We statistically analyze the compress-
ibility and sparsity structure of visual signals. In an at-
tempt to be invariant to the choice of basis for progres-

sive projection based capture techniques and the choice of
basis for sparse signal approximation in random projec-
tion based capture, we try several basis functions includ-
ing DCT, wavelet, Fourier and PCA basis for datasets and
compare the best case results. Further, different reconstruc-
tion algorithms for compressive sensing basis pursuit, L1

minimization, matching pursuit methods, etc each have a
different performance for different kinds of data. It has
been empirically noted that for all of these methods a min-
imum of M = 4K measurements are required to recon-
struct the K-largest magnitude approximation of the sparse
signal. This is generally considered an optimistic expecta-
tion. In an effort to remain independent of the numerical
limitations of the reconstruction algorithms, we do not use
any reconstruction algorithm, instead we study the energy
of the approximation in K = M/4 highest magnitude co-
efficients, where M is the number of linear measurements.
To be favorable to random projections, We:(a) ignore hard-
ware limitations, (b) do not consider effect of quantization.
However, the analysis in this paper is limited in the fol-
lowing ways:,we: (a) consider only linear measurements,
(d) do not consider structural sparse representations [4], (e)
do not consider adaptive methods like- learned dictionaries
[15] [19] [21] or overcomplete dictionaries [16] or hybrid
sensing techniques [2]

1.2. Contributions

• We devise a procedure to verify effectiveness of pro-
gressive as well as random projection based capture
methods by comparing the reconstruction SNR for
each compression factor. Importantly, the comparison
method is fast and independent of capture hardware or
reconstruction algorithm.

• We analyze the sparsity, compressibility and energy
compaction of several visual signals such as images,
videos, multi-spectral imaging and light-fields.

• We empirically demonstrate the analysis using a large
dataset for multiple classes of visual signals.

2.. Methodology
Traditional signal processing and sampling theory begins

with a continuous domain signal x(t) that is then discretized
at some sampling rate which is typically greater than the
Nyquist rate. In this paper, we consider signals as discrete
domain signals represented after they have been sampled
and quantized. Further, we only consider a finite time hori-
zon leading to a finite dimensional discrete vector. Let x
denote a finite dimensional discrete vector representing the
original signal that needs to be compressed.

Projective capture based comparison: Our goal in this
paper is to devise a scheme for comparison of signal cap-
ture using progressive transform projections that have been



Figure 2. Pseudo codes for computations. The table shows com-
pression techniques as implemented logically. ’S’ is the represen-
tation of signal in frequency domain. Above pseudo codes signify
the possible recoveries of frequency coefficients (Strunc) through:
Progressive projection capture (TC: Use of first M coefficients),
Random projection capture and L1 inversion (SC4: Use of high-
est magnitude M/4 coefficients) and Oracle capture (best possible:
SC1: Use of M highest magnitude coefficients) all for C = m

n

devised with the ideas of energy compaction in mind. Tra-
ditional energy compaction techniques, when used directly
in a hardware device observe linear combinations which are
directly the dot products with the basis functions. When
compression is required they observe far fewer dot products,
i.e., dot products only with the first few frequency basis ele-
ments (it is well documented that signals usually have more
energy in the first few coefficients). The newer emerging
techniques of sparse representation and compressive sens-
ing, instead rely on the fact that the signal is sparse in some
appropriate domain. In hardware this amounts to observ-
ing linear combinations (or dot products) of the signal with
some random binary (or Gaussian) vectors. The best esti-
mate of the signal is then obtained via an L1 optimization
algorithm. In order to compare the effectiveness of these
two techniques for the process of signal acquisition, we de-
vise a scheme that accurately approximates the reconstruc-
tion quality of a large class of visual signals. Further, the
technique we propose is device and algorithm independent
in the sense that limitations of the hardware sensing device
or the computational algorithms do not affect our results.

2.1.. Choice of Basis
We would like our analyses to be as basis independent

as possible. In order to achieve this, we analyze the perfor-
mance of each of the methods using a variety of commonly
used data independent basis such as DCT, wavelet, Fourier
etc. Further, in order to evaluate performance characteris-
tics due to the use of data dependent basis, we also use bases
obtained via principal component analysis on a separate
dataset for each of the datasets on which we evaluate our re-
sults. Recently, much progress has been made in the field of
dictionary learning, which is another data-dependent basis
better suited to sparse representations. While, performance
improvements over PCA maybe obtained via the careful use
of dictionary learning methods, these methods are yet to
reach a stage of maturity that allow easy empirical evalu-
ations. Therefore, in this paper we restrict our attention to
data-independent bases and to PCA basis.

2.2.. Comparison of projections
For the rest of this section, let us assume that we have a

hardware device available with us, capable of observing M
measurements, where each measurement is a linear combi-
nation of the signal with some known vector. The hardware
device is not restricted in the sense that it can obtain a linear
combination with any real valued vector. Similarly, we will
assume that at the back-end we have computational capac-
ity to reach the optimal solution that is feasible and are not
restricted by computational constraints. (Pseudo codes in
Figure2).

Progressive Transform Coding (TC): This method at-
tempts to approximate the reconstruction performance that
would be obtained while adapting traditional compression
techniques to capture devices. In hardware, this would
amount to obtaining direct linear combinations with the ba-
sis elements (in the order of increasing frequency). Recon-
struction, would amount to a backprojection into the signal
domain which again is a linear operation. We use the well
known Parseval’s theorem to approximate the reconstruc-
tion fidelity. When M measurements are obtained, this cor-
responds to the energy captured by the first M frequency
basis elements, irrespective of the magnitude of these coef-
ficients. Signals can be represented using their projections
onto the basis vectors as s = [s1s2s3......]

T = Φx, where
s represents the transform domain representation of the sig-
nal. The signal itself can be reconstructed from the basis co-
efficients as x̂ = Φ−1s = Bs since Φ is a full rank matrix.
This can also be written as a linear combination of the basis
functions as x =

∑N
1 siBi, where Bi is the ith basis func-

tion. Most common bases in which signals are represented
include the discrete cosine transform (DCT), wavelet trans-
form and the Fourier transform. Most of the times, first few
components of the representation s1, s2, s3, ....sK contain
most of the signal energy. Thus a K-term approximation
for the signal can be obtained via xK−term =

∑K
1 siBi.

This approximation usually captures significant amount of
the signal energy. Thus, if each progressive projection pat-
tern were made up of si basis vectors, progressively observ-
ing ’M’ measurements of the progressive projections would
be an ’M’ term approximation of the signal in respective
basis.

Oracle Sparsity Coding 1 (SC1): The goal of this
method is to obtain an upper bound for the performance
of sparse coding and compressive sensing techniques. As
in traditional random projection methods the capture hard-
ware would amount to observing random linear combina-
tions with either random binary or random Gaussian entries.
Traditional random projections based reconstruction pre-
dicts that if M measurements are observed then one would
be able to reconstruct K highest magnitude basis weights
where K is given by M = Klog(N/K). Thus, having
observed M measurements allows us to only reconstruct
K < M basis weights. In the best case scenario, where an



oracle allows us knowledge of the support (i.e. which co-
efficients have highest magnitude-unavailable in any prac-
tical setup), one can reconstruct the M highest magnitude
coefficients from the M measurements. Thus the energy
captured byM highest magnitude coefficients represents an
upper bound on the reconstruction performance using ran-
dom projections. Most practical methods would perform
much poorer than this upper bound.

Randomized SparsityCoding (SC4): As described be-
fore,Randomized sparsity coding observes random linear
combinations and we expect to reconstruct K highest mag-
nitude coefficients when we solve an L1 optmization for
reconstruction. Here we define that for s = φx, we mea-
sure Y as y = ψφx, where S is sparse to some extent and
ψ is a random matrix that satisfies the restricted isometry
property (RIP). It should be noted that the extent of spar-
sity in S is not exactly known here (as is the case in most
of the visual signals). Here xrec is obtained by solving the
linear system y = ψφx using L1 minimization (basis pur-
suit).In theory M = cKlog(N

K ) linear measurements are
required where c is an unknown constant. But in practice
an efficient and robust algorithm for reconstruction might
be able to reconstruct K = M/4 highest magnitude coeffi-
cients. While , this estimate is also optimistic, it is realistic
to expect that current and future algorithmic advances will
allow us to reach this. This would amount to the energy cap-
tured by the highest magnitudeM/4 coefficients and serves
as a realistic best case performance of Randomized spar-
sity coding. Thus, this process at its best possible inversion
performance is equivalent to Oracle sparsity coding (SC1)
but varies in the sense that for a use of M measurements
only M/4 coefficients effectively contribute. While all other
methods explained hitherto are data independent (except the
sparsity prior in Randomized sparsity coding), we also ex-
periment with Principal Component Analysis-a data depen-
dent compression technique .

2.3.. Evaluation Metrics:
To formally analyze the extent of compression achieved

and the quality of reconstructed signals, following statisti-
cal parameters can be used.The elements in s are the coeffi-
cients for describing the signal in transform domain.

Compression Factor (C): We define the compression
factor as the number of coefficients used out of the total
number of maximum coefficients. C = M

N

Reconstruction SNR (SNRrec): Reconstruction SNR
is the Signal to Noise Ratio defined for the reconstruction
quality. We define this as the ratio of original signal energy
to the error of the reconstructed signal compared to origi-
nal signal. If original signal is x and reconstructed signal is
xrec

SNR = 20 log10[ ||x||
||(x−xrec)|| ] dB

From Parseval’s energy theorem,

Figure 3. Example of compression of an image using competi-
tive compression techniques with a constant compression factor of
0.02. (a) Original image (b) Compression using Progressive pro-
jection capture -TC (c) Compression using Random projections
capture-SC4 (d) Compression using Oracle Capture-SC1. Perfor-
mance order is: SC1 > TC > SC4. This shows a case where
Progressive projection performs better than Random projection.

SNR = 20 log10[ ||s||
||s−strunc|| ] dB

This key idea allows us to compare SNRs directly in sparse
coefficient domain without worrying about reconstructing
Xrec from Strunc. Thus the method is fast and independent
of capture hardware or reconstruction algorithm.

3.. Datasets
For carrying out an empirical analysis of how random

projection capture (compressed sensing) performs in com-
parison with other compression techniques we do the exper-
iments over competitive methods of signal compression and
reconstruction. We elaborate the competitive techniques
used for signal compression in the signal processing liter-
ature and explain every technique for a generalized case
of signal reconstruction (independent of dimensions: im-
ages, videos, multispectral data, light fields or signal pa-
rameters being compressed: light field spatial resolution,
light fields angular resolution). For generality, let us as-
sume that we have total N measurements and for compres-
sion we use M measurements (C= m/n). Also, let us as-
sume that s = [s1s2...sn] and strunc = [st1st2....stn]. We
performed the SNR vs Compression factor analysis of fol-
lowing visual signals over a range of compression factors
[0 to 1] for the following datasets: (1) Images (2D) (a) Real
images included green channel of 1000 random 2MP Flickr
images resized to 256 × 256 pixels. (b) Cartoon images
included green channel of 1000 random 2MP high quality
cartoon images resized to 256×256 pixels. (c) Face images
included 4596 images from Yale B database [13]. For PCA,
the dataset was split into 4096 test images for learning and
500 gallery images for operation.(2) Videos included 30 un-
compressed videos resized to 64× 64× 64 pixels.(3) Multi
Spectral Data included Columbia CAVE labs database, 25
scenes with 512 pixels× 512 pixels × 31 wavelengths. For
PCA, cutout versions included 15 by 15 by 31 wavelength
(= 6975) data points. (4)Light fields from (New)Stanford
light field archive included 14 sets of 17 ×17 grid (289
views) with 1024 by 1024 resolution (resized to 256 × 256
pixels). For more details see supplementary material



Figure 4. Individual performance plots. We compare the individ-
ual performance of wavelets, FFT and DCT for each compression
method (TC, SC1, SC4) and plot the best performance curves for
each. The black curves show best performance curves.

Figure 5. The plot shows how individual best performance curves
are used to plot the final result

4.. Results
In order to perform the required comparison we ana-

lyzed the relative sparsity and energy compaction of vi-
sual signals in various data independent basis such as DCT,
wavelet, Fourier etc and also the data-dependent PCA ba-
sis. We present the reconstruction performance Vs Com-
pression factor plots for: Progressive projection capture
(TC),Oracle capture (SC1) and Random projection capture
(SC4). For each of the three methods, i.e., TC,SC1 and SC4
we plot the SNR vs compression factor for several different
choice of basis. In most cases, the bases that were chosen
were DCT, Fourier, Haar Wavelet and Farras Wavelet [1].
Once the separate performance plots for each of the indi-
vidual bases were obtained, (as shown in Figure 4), then for
each compression factor, we only retain the best performing
basis. Thus in essence, the performance plots we show are
the convex hull (best case) of the performance plots for each
of the individual bases as in figure 5.

Interpreting plots: Refer to Figure 6.

4.1.. Image datasets
We performed the analysis of energy compaction and

sparsity for images using 3 different kinds of image
datasets: Random images, cartoons and Faces.

Images: We compared the effectiveness using the fol-
lowing bases: DCT, FFT, Symlet, Daubechies and Haar
wavelet. Figure 8 shows the results. Randomized sparse
coding method becomes less effective as it does not know

Figure 6. How to interpret plots?: The approach in this paper is to
validate Randomized sparsity coding (SC4) method against Pro-
gressive transform coding (TC). Horizontal axis shows the com-
pression factor. SC1 is the best-case coding and is stretched in
the horizontal direction four times to give SC4. The example here
shows a scenario where compressive sensing may work, i.e., SC4
has a ’win’ region with respect to TC at highly compressed factors.

Figure 7. Image, Cartoon and face datasets: Image dataset made
up of Flickr and internet images, Cartoon dataset: Tom and Jerry,
Mickey mouse, Southpark, Face dataset: Yale B face dataset

Figure 8. Compression of images gives low reconstruction SNR
for lower values of C. Randomized sparsity coding (SC4) performs
poorly in comparison with other methods

the non-zero coefficients locations. Progressive transform
coding performs better than randomized sparsity coding



Figure 9. Although cartoons are sparse in gradient domain, TC
continues to perform better than SC4.

(SC4 ) for this dataset.

Cartoon Images: Figure 9 shows the results for ex-
periments on random cartoon image dataset. Cartoons are
sparse in gradient domain and have spectral distribution that
is very different from real images. This reflects in a better
compression performance compared to the images dataset.

Face Images: For the face images, we performed the
analysis using the data-independent bases as before (Fig-
ure 10). But since faces have a lot of structural similarity
we also performed analysis on face images using a data-
dependent PCA basis. The basis was learnt from an in-
dependent face dataset and there was no overlap between
the training and the testing datasets. Data Dependant tech-
niques perform well for face images. Notice that while
data-independent random sparse coding (SC4) and data-
independent progressive transform coding (TC) seem to
perform similarly, the data-dependent basis boosts perfor-
mance significantly. Nevertheless, there is not a great ben-
efit in performing Randomized sparsity coding (SC4) over
Progressive transform coding (TC) even for this dataset.

4.2.. Videos

Videos exhibit comparatively more redundancy because
of inter-frame overlaps. For videos SC4 does seem to per-
form marginally better than transform coding at very low
compression factors (See Figure 12). Since most interesting
compression techniques are concerned with larger compres-
sion factors, SC4 does not provide a significant advantage
over TC even for such video data. The performance of both
these methods maybe improved significantly using motion
compensation and other model based methods. The results
presented in this paper do not extend directly to such model
based methods.

Figure 10. PCA based compression performs well for faces. For
other techniques they match with image compression performance

Figure 11. Video dataset- HD documentaries and movies, Multi-
spectral dataset-CAVE labs, Columbia University

Figure 12. Videos are sparser compared to images, due to inter-
frame motion vector redundancies. Compression techniques per-
form better for videos than for images.

4.3.. Multispectral
Figure 13 shows that multi-wavelength capture using

Randomized Sparsity coding is beneficial. The intensity



Figure 13. Multispectral data shows intra-frame intensity varia-
tions. Compression performance is slightly better for multispectral
data compared to images and videos. SC4 starts showing advan-
tages at lower values of C

level variations among frames make the multispectral data
sparser in third dimension. Therefore, employing sparsity
based compression techniques lead to significant benefits at
large compression factors.Since this is the point of opera-
tion that is practical, we see that compressive sampling con-
fers a sampling advantage over traditional transform coding
for this dataset.

4.4.. Lightfields
For the light-fields dataset, we notice in Figure 15 that

Randomized Sparsity Coding (SC4) does perform signifi-
cantly better than Progressive Transform Coding (TC). This
indicates that sparse representations and compressive sens-
ing confer a significant benefit over traditional techniques
for capture and representation of light-fields.

The information contained in light-fields that is not avail-
able in traditional images is subtle disparity information and
information about specular highlights. The adjacent views
of the light-field are usually very similar and the reconstruc-
tion SNR might be high even when this additional informa-
tion (disparity etc) is not well captured. In order to evaluate
whether this information embedded in the light-field is well
captured, we also evaluated another metric for light-fields.
We analyze the SNR of the center view subtracted Light-
Field in order to evaluate the ability of these techniques to
capture the angular information. The results are shown in
Figure 16. This shows that SC4 performs better than TC
even for this angular information metric. Therefore, the
disparity information is also better preserved by the Ran-
domized sparsity coding techniques.

5.. Conclusions
We chose conditions favorable to projective signal cap-

ture, e.g., ignoring capture and reconstruction issues. Noise
will be highly amplified after reconstruction. Randomized

Figure 14. Stanford Light field archive (a) Spatial (b) Angular dis-
parity

Figure 15. Randomized Sparsity Coding (SC4) shows up to 5
dB better performance compared to Progressive Transform cod-
ing (TC). Light field sub-aperture views are sparser by nature and
hence allow better reconstruction using SC4

Figure 16. Light fields in angular domain are relatively sparse.
The angular sampling of rays does not show significant pixel value
variations. SC4 shows notable reconstruction SNR values at lower
values of C. The overall reconstruction performance is best among
the dataset types tested

projections require basis pursuit algorithms assume near-
idealized sensors and hence are highly susceptible to sensor
noise or variation from system model. Quantization alone
adds one-half of a digital level as noise (For an 8 bit image,
the SNR of measured values is clamped at about 53dB.)
Randomized projections are more likely to use high fre-
quency patterns in optical path (e.g. coded apertures) mak-
ing diffraction or calibration more critical. Bayesian infer-
ence and other prior based methods may benefit both types
of projections. Our discussion was limited to linear and
non-adaptive projections. Results of the empirical experi-



Figure 17. Summary of relative performance plotted as progres-
sive transform coding SNR against randomized sparsity coding
SNR for each visual data type. Images have low SNR for both.
Higher dimensional signals such as multispectral data and light
fields have higher SNRs for SC4 coding.

ments indicate that under idealized sensor and reconstruc-
tion conditions, randomized projections offer a benefit for
acquiring high dimensional signals such as multi-spectral
and light-field data in roughly this order.

images < faces <cartoons < videos < multispectral < LF

Thus more research is needed in novel hardware for ran-
domized projection based approaches for light fields and
even reflectance fields.

The sparsity of visual signals is difficult to quantify. By
experimenting over large sets, we hope to have captured
the characteristics of natural visual signals. There is a re-
mote possibility that the data is in fact significantly more
sparse in some unusual yet-to-be-discovered transform ba-
sis. But that would be useful for general (non-linear, soft-
ware based) image compression as well. The lack of such
software algorithm indicates low likelihood of such a trans-
form and we consider our empirical results as represen-
tative. Hence, researchers should further investigate non-
linear or data-adaptive measurements - like use of learned
dictionaries or over-complete dictionaries directly suitable
for capture purposes.
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